(4t+3t^2)=+18(9t+2)

Simple and best practice solution for (4t+3t^2)=+18(9t+2) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (4t+3t^2)=+18(9t+2) equation:



(4t+3t^2)=+18(9t+2)
We move all terms to the left:
(4t+3t^2)-(+18(9t+2))=0
We get rid of parentheses
3t^2+4t-(+18(9t+2))=0
We calculate terms in parentheses: -(+18(9t+2)), so:
+18(9t+2)
determiningTheFunctionDomain 18(9t+2)
We multiply parentheses
162t+36
Back to the equation:
-(162t+36)
We get rid of parentheses
3t^2+4t-162t-36=0
We add all the numbers together, and all the variables
3t^2-158t-36=0
a = 3; b = -158; c = -36;
Δ = b2-4ac
Δ = -1582-4·3·(-36)
Δ = 25396
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{25396}=\sqrt{4*6349}=\sqrt{4}*\sqrt{6349}=2\sqrt{6349}$
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-158)-2\sqrt{6349}}{2*3}=\frac{158-2\sqrt{6349}}{6} $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-158)+2\sqrt{6349}}{2*3}=\frac{158+2\sqrt{6349}}{6} $

See similar equations:

| 2-(2j+8)=-6j+2 | | -38=-9x-10x | | -9(5x+2)=-333 | | 8x-4=54 | | 2-1x=14-1x | | -3(-2+x)=9 | | 3x^2-89=7 | | 3x+7+x-4=-x-2 | | 7-(2h+5)=-5h+6 | | 37=6x11 | | (x+5)+(x-2)=30 | | −(7−x)+5=x+7 | | 3x-(-20)=29 | | 3x−6=21 | | 18x-19-17x=16 | | -7(4x-1)=-28-7 | | 2(-3x+2)+2x=-3x | | 4(7x-3)=15 | | 2x+9+1x+26=3x+35 | | 6(x+5)-4=7(x+4) | | -(x-5)=-2x+5+x | | 7x-4+5x=6x+2 | | 7/8-1/4m=-3/8 | | 5b/34=-2-7b | | 2X²+12x+15=0 | | 10x+16=6x+120 | | 8x+4=6+9x | | 2x+5-4x=7-2x | | X²+6x+7.5=0 | | -16d+19+-10d=7 | | x/7-10=3 | | 6x-4=4x=7 |

Equations solver categories